Test Requisition #800067 Physician: JULIA CASSETTA

CLIENT #: 24510

ORDER: 200514-0219 CLIENT REF: 800067 PATIENT: Robert Stehlin ID: P201350180 SEX: Male AGE: 56 DOB: 07/09/1963

Comprehensive Stool Analysis / Parasitology x2

BACTERIOLOGY CULTURE		
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora
4+ Bacteroides fragilis group	1+ Beta hemolytic strep, group B	
NG Bifidobacterium spp.		
3+ Escherichia coli		
NG Lactobacillus spp.		
1+ Enterococcus spp.		
4+ Clostridium spp.		
NG = No Growth		
	BACTERIA INFORMATION	

Expected / Beneficial bacteria make up a significant portion of the total microflora in a healthy & balanced GI tract. These beneficial bacteria have many health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating anti-tumor and anti-inflammatory factors.

Clostridia are prevalent flora in a healthy intestine. Clostridium spp. should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If C. difficile associated disease is suspected, a Comprehensive Clostridium culture or toxigenic C. difficile DNA test is recommended.

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficient levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels.

Dysbiotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the GI tract. They can be present due to a number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics, oral contraceptives or other medications; poor fiber intake and high stress levels.

YEAST CULTURE

Normal flora No yeast isolated Dysbiotic flora

MICROSCOPIC YEAST

- RESULT
- None

EXPECTED None – Rare

Yeast in stool is expected at a level of none-rare. A microscopic finding of yeast in stool of few, moderate, or many may be helpful in identifying potential yeast overgrowth, or non-viable or dietary yeast.

YEAST INFORMATION

Yeast may normally be present in small quantities in the skin, mouth, and intestine. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast are not uniformly dispersed throughout the stool and this may lead to undetectable or low levels of yeast identified by microscopy, despite culture and identified yeast species. Conversely, microscopic examination may reveal a significant amount of yeast present but no viable yeast cultured. Yeast may not always survive transit through the intestines. Nonviable diet-derived yeast may also be detected microscopically. Consideration of clinical intervention for yeast detected microscopically should be made in the context of other findings and presentation of symptoms.

SPECIMEN DATA

Comments: Date Collected: 05/11/2020 05:00 Date Received: 05/14/2020 16:29 Date Reported: 05/22/2020 01:30 Methodology: Culture and identification by MALDI-TOF and conventional biochemicals

*Aeromonas, Campylobacter, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Edwardsiella tarda have been specifically tested for and found absent unless reported.

©DOCTOR'S DATA, INC. • ADDRESS: 3755 Illinois Avenue, St. Charles, IL 60174-2420 • CLIA ID NO: 14D0646470 • LAB DIR: Erlo Roth, MD

ORDER: 200514-0219 CLIENT REF: 800067 PATIENT: Robert Stehlin ID: P201350180 SEX: Male AGE: 56 DOB: 07/09/1963

Comprehensive Stool Analysis / Parasitology x2

Protozoa	PX1	PX2	
Balantidium coli	Not Detected	Not Detected	Intestinal parasites are
Blastocystis spp.	Not Detected	Not Detected	abnormal inhabitants of the
Chilomastix mesnili	Not Detected	Not Detected	gastrointestinal tract that have
Dientamoeba fragilis	Not Detected	Not Detected	to their host. The presence of
Endolimax nana	Not Detected	Not Detected	any parasite within the intestine
Entamoeba coli	Not Detected	Not Detected	generally confirms that the
Entamoeba hartmanni	Not Detected	Not Detected	organism through fecal-oral
Entamoeba histolytica/Entamoeba dispar	Not Detected	Not Detected	contamination. Damage to the
Entamoeba polecki	Not Detected	Not Detected	host includes parasitic burden,
Enteromonas hominis	Not Detected	Not Detected	pressure. Immunologic
Giardia duodenalis	Not Detected	Not Detected	inflammation, hypersensitivity
lodamoeba bütschlii	Not Detected	Not Detected	reactions and cytotoxicity also
Isospora belli	Not Detected	Not Detected	of these diseases. The infective
Pentatrichomonas hominis	Not Detected	Not Detected	dose often relates to severity of
Retortamonas intestinalis	Not Detected	Not Detected	the disease and repeat
Nematodes - Roundworms			In general acute manifestations
Ascaris lumbricoides	Not Detected	Not Detected	of parasitic infection may
Capillaria hepatica	Not Detected	Not Detected	involve diarrhea with or without
Capillaria philippinensis	Not Detected	Not Detected	mucus and or blood, fever,
Enterobius vermicularis	Not Detected	Not Detected	However these symptoms do
Strongyloides stercoralis	Not Detected	Not Detected	not always occur.
Trichuris trichiura	Not Detected	Not Detected	Consequently, parasitic
Hookworm	Not Detected	Not Detected	diagnosed or eradicated. If left
Cestodes - Tapeworms			untreated, chronic parasitic
Diphyllobothrium latum	Not Detected	Not Detected	infections can cause damage to
Dipylidium caninum	Not Detected	Not Detected	an unsuspected cause of illness
Hymenolepis diminuta	Not Detected	Not Detected	and fatigue. Chronic parasitic
Hymenolepis nana	Not Detected	Not Detected	infections can also be
Taenia	Not Detected	Not Detected	intestinal permeability irritable
Trematodes - Flukes			bowel syndrome, irregular
Clonorchis sinensis	Not Detected	Not Detected	bowel movements,
Fasciola hepatica/Fasciolopsis buski	Not Detected	Not Detected	indigestion, skin disorders, joint
Heterophyes heterophyes	Not Detected	Not Detected	pain, allergic reactions, and
Paragonimus westermani	Not Detected	Not Detected	decreased immune function.
Other Markers			One negative parasitology x1
Yeast	Not Detected	Not Detected	possibility of parasitic disease,
RBC	Rare	Rare	parasitology x3 is
WBC	Not Detected	Not Detected	designed to detect Cyclospora
Charcot-Leyden Crystals	Not Detected	Not Detected	cayetanensis or Microsporidia
Pollen	Not Detected	Not Detected	spp.
Immunoassay	RESULT	REFERENCE INTERVAL	
Giardia duodenalis	Negative	Negative	
Cryptosporidium	Negative	Negative	

SPECIMEN DATA

Comments: Date Collected: 05/11/2020 05:00 Date Received: 05/14/2020 16:29 Date Reported: 05/22/2020 01:30 Methodology: Microscopy, Enzyme Immunoassay

©DOCTOR'S DATA, INC. • ADDRESS: 3755 Illinois Avenue, St. Charles, IL 60174-2420 • CLIA ID NO: 14D0646470 • LAB DIR: Erlo Roth, MD

ORDER: 200514-0219 CLIENT REF: 800067 PATIENT: Robert Stehlin ID: P201350180 SEX: Male AGE: 56 DOB: 07/09/1963

CLIENT #: 24510

Comprehensive Stool Analysis / Parasitology x2

ORDER: 200514-0219 CLIENT REF: 800067 PATIENT: Robert Stehlin ID: P201350180 SEX: Male AGE: 56 DOB: 07/09/1963

CLIENT #: 24510

Comprehensive Stool Analysis / Parasitology x2

INTESTINAL HEALTH MARKERS

	WITHIN	OUTSIDE	REFERENCE INTERVA	L Red Blood Cells (RBC) in the stool may be associated with a parasitic or bacterial infection, or
Red Blood Cells	Rare		None – Rare	an inflammatory bowel condition such as ulcerative colitis. Colorectal cancer, anal fistulas, and
pН	6.5		5.8-7.0	hemorrhoids should also be ruled out. pH: Fecal pH is largely dependent on the fermentation of fiber by the beneficial flora of the out.
Occult Blood	Negative		Negative	Occult blood: A positive occult blood indicates the presence of free hemoglobin found in the stool, which is released when red blood cells are lysed.

MACROSCOPIC APPEARANCE	
	MACROSCOPIC APPEARANCE

	WITHIN	OUTSIDE	EXPECTED	Color: Stool is normally brown because of pigments formed by bacteria acting on bile introduced into the
Color	Brown		Brown	digestive system from the liver. While certain conditions can cause changes in stool color, many
Consistency	Soft		Soft	changes are harmless and are caused by pigments in foods or dietary supplements. Consistency: Stool normally contains about 75% water and ideally should be formed and soft. Stool consistency can vary based upon transit time and water absorption.

SPECIMEN DATA		
Comments:		
Date Collected: 05/11/2020 05:00		
Date Received: 05/14/2020 16:29		
Date Reported: 05/22/2020 01:30		
Methodology: Gas Chromotography, ph Electrode, Guaiac, Macroscopic Observation		
[‡] This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U.S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use.		

©DOCTOR'S DATA, INC. • ADDRESS: 3755 Illinois Avenue, St. Charles, IL 60174-2420 • CLIA ID NO: 14D0646470 • LAB DIR: Erlo Roth, MD

Introduction

This analysis of the stool specimen provides fundamental information about the overall gastrointestinal health of the patient. When abnormal microflora or significant aberrations in intestinal health markers are detected, specific commentaries are presented. If no significant abnormalities are found, commentaries are not presented.

Microbiology

Beneficial Flora

One or more of the expected or beneficial bacteria are low in this specimen. Normally abundant bacteria include Lactobacillus spp, Bifidobacteria spp, Clostridium spp, Bacteroides fragilis group, Enterococcus spp, and Escherichia coli. The beneficial flora have many health-protecting effects in the gut, and as a consequence, are crucial to the health of the whole organism. Some of the roles of the beneficial flora include digestion of proteins and carbohydrates, manufacture of vitamins and essential fatty acids, increase in the number of immune system cells, break down of bacterial toxins and the conversion of flavonoids into anti-tumor and anti-inflammatory factors. Lactobacilli, bifidobacteria, clostridia, and enterococci secrete lactic acid as well as other acids including acetate, propionate, butyrate, and valerate. This secretion causes a subsequent decrease in intestinal pH, which is crucial in preventing an enteric proliferation of microbial pathogens, including bacteria and yeast. Many GI pathogens thrive in alkaline environments. Lactobacilli also secrete the antifungal and antimicrobial agents lactocidin, lactobacillin, acidolin, and hydrogen peroxide. The beneficial flora of the GI tract have thus been found useful in the inhibition of microbial pathogens, prevention and treatment of antibiotic associated diarrhea, prevention of traveler's diarrhea, enhancement of immune function, and inhibition of the proliferation of yeast.

In a healthy balanced state of intestinal flora, the beneficial bacteria make up a significant proportion of the total microflora. Healthy levels of each of the beneficial bacteria are indicated by either a 2+, 3+ or 4+ (0 to 4 scale). However, in some individuals there is an imbalance or deficiency of beneficial flora and an overgrowth of non-beneficial (imbalance) or even pathogenic microorganisms (dysbiosis). This can be due to a number of factors including: consumption of contaminated water or food; daily exposure of chemicals that are toxic to beneficial bacteria; the use of antibiotics, oral contraceptives or other medications; poor fiber intake and high stress levels.

A number of toxic substances can be produced by the dysbiotic bacteria including amines, ammonia, hydrogen sulfide, phenols, and secondary bile acids which may cause inflammation or damage to the brush border of the intestinal lining. If left unchecked, long-term damage to the intestinal lining may result in leaky gut syndrome, fatigue, chronic headaches, and sensitivities to a variety of foods. In addition, pathogenic bacteria can cause acute symptoms such as abdominal pain, nausea, diarrhea, vomiting and fever in cases of food poisoning.

Antibacterial and antifungal susceptibility testing to a variety of prescriptive and natural agents may be provided for the pathogenic organisms that are cultured from this patient's specimen. This testing is intended to provide the practitioner with useful information to help plan an appropriate treatment regimen. A comprehensive program may be helpful in individuals in whom a dysbiotic condition has caused extensive GI damage.

Note: Not all genera or species can be tested for susceptibilities in the laboratory due to their specific growth requirements. In addition, the Centers for Disease Control and Prevention recommend not testing certain organisms such as those associated with food poisoning. If a practitioner has specific questions, please contact customer service.

Clostridium spp

Clostridia are expected inhabitants of the human intestine. Although most clostridia in the intestine are not virulent, certain species have been associated with disease. Clostridium perfringens is a major cause of food poisoning and is also one cause of antibiotic-associated diarrhea. Clostridium difficile is a causative agent in antibiotic-associated diarrhea and pseudomembranous colitis. Other species reported to be prevalent in high amounts in patients with Autistic Spectrum Disorder include Clostridium histolyticum group, Clostridium cluster I, Clostridium bolteae, and Clostridium tetani.

Imbalanced Flora

Imbalanced flora are those bacteria that reside in the host gastrointestinal tract and neither injure nor benefit the host. Certain dysbiotic bacteria may appear under the imbalanced category if found at low levels because they are not likely pathogenic at the levels detected. When imbalanced flora appear, it is not uncommon to find inadequate levels of one or more of the beneficial bacteria and/or a fecal pH more towards the alkaline end of the reference range (6 - 7.8). It is also not uncommon to find hemolytic or mucoid E. coli with a concomitant deficiency of beneficial E. coli and alkaline pH, secondary to a mutation of beneficial E. coli in alkaline conditions (DDI observations). Treatment with antimicrobial agents is unnecessary unless bacteria appear under the dysbiotic category.

Stool Chemistries

Short Chain Fatty Acids (SCFAs)

The total concentration and/or percentage distribution of the primary short chain fatty acids (SCFAs) are abnormal in this specimen. Beneficial bacteria that ferment non-digestible soluble fiber produce SCFAs that are pivotal in the regulation of intestinal health and function. Restoration of microbial abundance and diversity, and adequate daily consumption of soluble fiber can improve SCFA status.

Stool Chemistries continued...

The primary SCFAs butyrate, propionate and acetate are produced by predominant commensal bacteria via fermentation of soluble dietary fiber and intestinal mucus glycans. Key producers of SCFAs include Faecalibacterium prausnitzii, Akkermansia muciniphila, Bacteroides fragilis, Bifidobacterium, Clostridium and Lactobacillus species. The SCFAs provide energy for intestinal cells, and regulate the actions of specialized mucosal cells that produce anti-inflammatory and antimicrobial factors, mucins that constitute the mucus barriers, and gut active peptides that facilitate appetite regulation and euglycemia. The SCFAs also contribute to a more acidic and anaerobic microenvironment that disfavors dysbiotic bacteria and yeast. Abnormal SCFAs may be associated with dysbiosis (including insufficiency dysbiosis), compromised intestinal barrier function (intestinal permeability) and inappropriate immune and inflammatory conditions.

"Seeding" with supplemental probiotics may contribute to improved production and status of SCFAs, but it is imperative to "feed" the beneficial microbes. Sources of soluble fiber that are available to the microbes include chick peas, beans, lentils, oat and rice bran, fructo- and galacto- oligosaccharides, and inulin.