Light is essential to life as we know it. Plants rely upon sunlight to generate chemical energy, which is stored in their tissues and fuels various life processes. In turn, animals like us convert the energy from the food that we eat into mechanical energy.
Furthermore, we depend upon light energy entering our eyes in order to see and interact with the world around us, and to align our biological clock. Everything that you do, and everything that you see around you, is the product of light.
Given its fundamental role in our biology, it shouldn’t be too surprising that patterns of light exposure are intimately linked to our health and performance – in ways that research is only just starting to elucidate.
For instance, we’ve learned that insufficient environmental light may lead to structural changes in the brain, and to poorer cognitive performance. Importantly, different wavelengths of light may have specific effects. For example, short-wavelength light (or blue light) has been shown to modulate blood pressure. And some studies have suggested that ultraviolet light might protect against weight gain and cardiovascular disease, as well as prevent metabolic derangement and type 2 diabetes. If you want to take a deeper dive into this topic, I’d recommend you check out Dan’s TED talk on the subject (embedded below).
But another form of light exposure, which you’ve probably heard about before, and which we haven’t had the opportunity to address here, until now, is red light therapy.
Like hundreds of technological advances that we take for granted today, the medical application of red light therapy appears to have originated from NASA. Scientists developed red light-emitting diodes (LEDs) to help promote growth in plants on space shuttle missions. From there, red light was investigated for potential medical uses, perhaps to combat the adverse effects associated with space travel in astronauts.
These LEDs were shown to stimulate energy processes in mitochondria – the organelles where our cell’s energy is generated. By augmenting mitochondrial function, and enhancing energy production, you would expect cells to be better able to repair and rejuvenate themselves. But is that indeed the case?
Since red LEDs were invented, thousands of studies have been performed to figure out if red light therapy can improve health and human performance. If you do a search on red light therapy in Google, you will be inundated with health claims spanning an extraordinary range of conditions, from cellulite to osteoarthritis to carpal tunnel syndrome to Alzheimer’s disease. If you’re like me, that might raise some red flags in your mind.
So, are the benefits attributed to red light therapy authentic? Or is this just snake oil for the Instagram era?
Our guest for this episode is uniquely qualified to shed light on this. CLICK TO REVIEW BLOG AND LISTEN TO PODCAST