Smartphone Speech Testing for Symptom Assessment in Rapid Eye Movement Sleep Behavior Disorder and Parkinson’s Disease

We analyzed 4242 smartphone voice recordings collected in clinic and at home from 92 Controls, 112 RBD and 335 PD participants. We used acoustic signal analysis and machine learning, employing 337 features that quantify different properties of speech impairment. Using a leave-one-subject-out cross-validation scheme, we were able to distinguish RBD from controls (sensitivity 60.7%, specificity 69.6%) and RBD from PD participants (sensitivity 74.9%, specificity 73.2%), and predict clinical assessments with clinically useful accuracy. These promising findings warrant further investigation in using speech as a digital biomarker for PD and RBD to facilitate intervention in the early and prodromal stages of PD. CLICK TO REVIEW